Advertisement

The St Andrews Girls’ Hostel Sets a Template for Sustainable Dwelling Solutions

The Girls’ Hostel Block at the St. Andrews Institute of Technology and Management in Gurugram explores the intersection of education and sustainability through the lens of the vernacular.

The St Andrews Girls Hostel. Photograph: Andre J Fanthome

Completed in 2020, the design for the 25,000 sq ft Girls’ Hostel takes cues from the adjacent Boys’ Hostel Block and is articulated in brick and fair-faced concrete, with exposed structural members abutting along all sides. The hostel’s design empowers students with the freedom of movement within an environment that prioritises thermal comfort and functionality, to become an example of zero energy design. The hostel is home to approximately 130 students, with dorm rooms spread across four levels in addition to hosting ancillary spaces like a pantry, recreational areas as well as social spaces. The ground floor comprises 12 double-occupancy rooms along with a double-height reception, pantry and indoor activity lounge where students can organise gatherings and social events.

Advertisement
Photograph: Andre J Fanthome

The Brief
The design faced a series of challenges from conception to execution. The primary design challenge was to create a secure hub for the girls—a campus within a campus fitting into the urban master plan that did not restrict movement, while establishing a connection with the outdoors. In response to the constraints, the layout has been designed to incorporate indoor and outdoor spaces that connect physically and visually at different levels to enhance interactions and social activities. Moreover, to bring in a sense of the exterior landscape, the entrance foyer and lobby are designed as outdoor spaces to face the west, and are connected to the pantry so that students can enjoy their evenings outside with a spill-out into the green landscape. The students have been given the freedom to create their own space in a safe environment, without any imposed restrictions. In terms of construction too, the staircase and the attached façade posed a design challenge. The free-standing façade was to be constructed at a 30 ft distance from the building, spanning a height of three floors and keeping in mind structural integrity and earthquake resistance. This was brought to life through an extensive scaffolding and casting process. Design and Planning The design seeks to reinterpret conventional standards of human comfort by introducing the idea of adaptive comfort—the principle that people experience differently and adapt, up to a certain extent, to a variety of indoor conditions, depending on their clothing, their activity and general physical condition. The building unfolds as a series of multidimensional spaces, arranged in a hierarchical order through the method of adaptive layering.

Photograph: Andre J Fanthome

Each space is conceptualised as an intimate environment that prioritises both functionality and human comfort. As students move from the interiors of the building into the open, they experience distinct transitions in varying thermal environments. The activity lounge on the ground floor, placed next to the landscaped court, creates an intimate environment for studying or conversation. Further, the adjacent internal landscaped court features dense plantation to reduce heat gain through evaporative cooling. From the core of the building towards the outdoor, the next transition is the second-floor terrace along the building’s west façade that attracts students in the mornings and late evenings in summers, and serves as an allday space to congregate during winters. The design of the building is kept simple while identifying essential elements such as the staircases as hubs for social interaction. The subsequent transitional zone at the heart of the building is a staircase, aesthetically incorporated into the south facade, connecting all the floors. Transitional and circulation spaces such as bridges open into lounges and pause points to create room for socialising and group study. Since the bridges create a visual connection, they enhance interaction and interconnection, seamlessly extending into the student lounges on multiple floors creating fluid spaces. The staircase manifests as the fundamental social nucleus that is home to all activities, from large scale celebrations and events to quick informal conversations. The exterior lobby area often serves as a badminton court in the evenings, and the courtyard that hosts frequent carrom games are spaces that encourage sports.

Drawings
Drawings
Drawings
Drawings

Advertisement

The Double Skin Façade
With limited space available along the northern façade of the hostel, a double-skin façade has been developed with the intention of creating a semipermeable layer that would help in shading and regulating the temperature between the exterior and interior environments via controlled airflow. The parametric screen takes cues from the previously developed façade that spanned the adjacent boys’ hostel within the institute. The Boys’ Hostel Block’s façade was designed as an envelope in which the rotational angles of the brick were calculated in order to block diffused and direct radiation. However, it became evident that the depth of the brick when rotated, was not able to create a deep enclosure to cut off diffused radiation in the required manner. Hence, for the girls’ hostel, the exterior façade screen uses hollow pigmented concrete blocks to resemble the colour of red brick. The blocks have been successful in addressing three concerns. Not only do they provide adequate thermal mass to absorb the heat, but with a depth of eight inches, the direct radiation has to penetrate through several layers and get reflected on different surfaces multiple times before entering the interiors, thus reducing glare. In addition, since the block is penetrable, the air volume passing through this mass loses its heat through compression on the basis of Bernoulli’s principle. The blocks are also slightly rotated at a specific angle based on the insulation analysis with respect to solar heat gain. The interior second skin provides a volume where the user can step out to a shaded environment such as a balcony or court. It is a space that prioritises thermal comfort through the adaptive behaviour of the building and enables functionality. The second skin takes on the role of a breakout space such as a terrace, between the interior and exterior. It empowers students to take charge of their environment and activity, as well as connect with nature while still being inside the building.

Photograph: Andre J Fanthome

The Materiality The building’s materialisation in concrete and brickwork binds the different floors together. The columns are round in shape to enhance visual appearance as well as physicality. Moreover, instead of employing singular columns, the sheer mass is broken down into three columns in a tripod-like configuration to provide better structural stability as a vertical support. The pergola on the roof is designed using cement board and steel beams to achieve lightweight construction and optimum design quality.

Photograph: Andre J Fanthome

Landscape Strategies
The landscape design enriches the space by bringing the greenery inside to serve not only aesthetic but also functional purposes. Being closer to nature is scientifically proven to have a favourable impact on psychological and physiological well-being, as well as create a conducive environment for interaction—and this directed our landscape strategy. The edge details of the planters are designed as seaters, allowing students to sit with nature. The shaded courtyard hosts a diverse variety of plant species that require lesser exposure to sun. The peripheral areas feature bamboo that creates a screen. Outside the building, where the ground is completely exposed to the sun, champa trees have been planted due to their large canopies to create shaded seating spaces. The surface of the outdoor landscaped court is penetrable, facilitating ground water penetration. Wastewater, such as water from the washrooms, is conveyed to the sewage treatment plant and is reused for horticulture purposes. Energy Efficiency The Girls’ Hostel building is an exemplar of sustainability through its energy-efficient design. The double-skin façade acts as a thermal mass, reducing the incident direct and diffused radiations by 70% on the principal façade, thus minimising heat gain within the habitable spaces behind the block wall. This further reduces the mechanical cooling loads by 35%, a marked increment from the ECBC (Energy Conservation Building Code) base case of public buildings.

Text: Provided by the Architect.

Seema Edi

Recent Posts

A trailblazer in green design: Infosys’ new Nagpur campus by Morphogenesis

The Infosys campus in Nagpur by Manit Rastogi and Sonali Rastogi of Morphogenesis rewrites the rulebook on…

November 16, 2024

#Kidtecture Where Play Meets Purpose: Inside the Cocoon at Bloomingdale International School by andblack Design Studio

As part of our Children’s Day feature, we explore the pioneering work of architects who…

November 14, 2024

#Kidtecture Curves of Wonder: Hsc Designs’ nature-inspired design at Shreyas Foundation School

In celebration of Children’s Day, we continue our exploration of thoughtful, engaging spaces crafted for…

November 14, 2024

#Kidtecture Learn how Komal Mittal and Ninada Kashyap are building playful learning education spaces

As part of our Children's Day feature, we spotlight the inspiring work of architects who…

November 12, 2024

#Kidtecture In designing Sparkrill International School, Vaishali Mangalvedhekar reimagines the school environment as a space for holistic growth

As we celebrate Children's Day, we shine a light on how architecture can inspire, educate,…

November 11, 2024

#Kidtecture Alpana Gupta creates environments where students can thrive, learn, and ultimately shape the future

In the ever-evolving landscape of education, architects are playing a pivotal role in shaping learning…

November 11, 2024